Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 150: 116007, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34000433

RESUMO

Pyridoxal 5'-phosphate (PLP), the principal circulating form of vitamin B6 (B6), is elevated in the plasma of individuals with hypophosphatasia (HPP). HPP is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of ALPL, the gene that encodes the "tissue-nonspecific" isoenzyme of alkaline phosphatase (TNSALP). PLP accumulates extracellularly in HPP because it is a natural substrate of this cell-surface phosphomonoester phosphohydrolase. Even individuals mildly affected by HPP manifest this biochemical hallmark, which is used for diagnosis. Herein, an exclusively breast-fed newborn boy with life-threatening perinatal HPP had uniquely normal instead of markedly elevated plasma PLP levels before beginning asfotase alfa (AA) TNSALP-replacement therapy. These abnormal PLP levels were explained by B6 deficiency, confirmed by his low plasma level of 4-pyridoxic acid (PA), the B6 degradation product. His mother, a presumed carrier of one of his two ALPL missense mutations, had serum ALP activity of 50 U/L (Nl 40-130) while her plasma PLP level was 9 µg/L (Nl 5-50) and PA was 3 µg/L (Nl 3-30). Her dietary history and breast milk pyridoxal (PL) level indicated she too was B6 deficient. With B6 supplementation using a breast milk fortifier, the patient's plasma PA level corrected, while his PLP level remained in the normal range but now in keeping with AA treatment. Our experience reveals that elevated levels of PLP in the circulation in HPP require some degree of B6 sufficiency, and that anticipated increases in HPP can be negated by hypovitaminosis B6.


Assuntos
Hipofosfatasia , Fosfatase Alcalina , Feminino , Humanos , Hipofosfatasia/tratamento farmacológico , Hipofosfatasia/genética , Recém-Nascido , Masculino , Fosfatos , Gravidez , Piridoxal , Vitamina B 6 , Vitaminas
2.
Plant Physiol ; 181(1): 85-96, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308150

RESUMO

The plant-specific translation initiation complex eIFiso4F is encoded by three genes in Arabidopsis (Arabidopsis thaliana)-genes encoding the cap binding protein eIFiso4E (eifiso4e) and two isoforms of the large subunit scaffolding protein eIFiso4G (i4g1 and i4g2). To quantitate phenotypic changes, a phenomics platform was used to grow wild-type and mutant plants (i4g1, i4g2, i4e, i4g1 x i4g2, and i4g1 x i4g2 x i4e [i4f]) under various light conditions. Mutants lacking both eIFiso4G isoforms showed the most obvious phenotypic differences from the wild type. Two-dimensional differential gel electrophoresis and mass spectrometry were used to identify changes in protein levels in plants lacking eIFiso4G. Four of the proteins identified as measurably decreased and validated by immunoblot analysis were two light harvesting complex binding proteins 1 and 3, Rubisco activase, and carbonic anhydrase. The observed decreased levels for these proteins were not the direct result of decreased transcription or protein instability. Chlorophyll fluorescence induction experiments indicated altered quinone reduction kinetics for the double and triple mutant plants with significant differences observed for absorbance, trapping, and electron transport. Transmission electron microscopy analysis of the chloroplasts in mutant plants showed impaired grana stacking and increased accumulation of starch granules consistent with some chloroplast proteins being decreased. Rescue of the i4g1 x i4g2 plant growth phenotype and increased expression of the validated proteins to wild-type levels was obtained by overexpression of eIFiso4G1. These data suggest a direct and specialized role for eIFiso4G in the synthesis of a subset of plant proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Fator de Iniciação Eucariótico 4G/genética , Mutação , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...